Solar System Puzzle Kit

An Activity for Earth and Space Science
Solar System Puzzle Kit: An Activity for Earth and Space Science is available in electronic format through NASA Spacelink—one of the Agency’s electronic resources specifically developed for use by the educational community.

The system may be accessed at the following address: http://spacelink.msfc.nasa.gov

For additional information, E-mail a message to: comments@spacelink.msfc.nasa.gov
Solar System Puzzle Kit
An Activity for Earth and Space Science

National Aeronautics and Space Administration
Office of Human Resources and Education
Education Division
and
Office of Space Science
Solar System Exploration Division
Washington, DC

This publication is in the Public Domain and is not protected by copyright.
Permission for duplication is not required.

Acknowledgments

The Solar System Puzzle Kit was designed for the National Aeronautics and Space Administration by the:

Office of Human Resources and Education Education Division

and

Office of Space Science Solar System Exploration Division

Designer:
Gregory L. Vogt, Ed.D.
Teaching From Space Program
NASA Johnson Space Center
Houston, TX

Writers:
Gregory L. Vogt, Ed.D.
Teaching From Space Program
NASA Johnson Space Center
Houston, TX

Carla B. Rosenberg
Teaching From Space Program
NASA Headquarters
Washington, DC

Contributors:
Jens T. Feeley
Office of Space Science
Solar System Exploration Division
NASA Headquarters
Washington, DC

Joseph M. Boyce
Office of Space Science
Solar System Exploration Division
NASA Headquarters
Washington, DC

Editor:
Carla B. Rosenberg
Teaching From Space Program
NASA Headquarters
Washington, DC
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>NASA Images</td>
<td>1</td>
</tr>
<tr>
<td>Sun</td>
<td>2</td>
</tr>
<tr>
<td>Mercury</td>
<td>2</td>
</tr>
<tr>
<td>Venus</td>
<td>3</td>
</tr>
<tr>
<td>Earth</td>
<td>3</td>
</tr>
<tr>
<td>Mars</td>
<td>4</td>
</tr>
<tr>
<td>Jupiter</td>
<td>4</td>
</tr>
<tr>
<td>Saturn</td>
<td>5</td>
</tr>
<tr>
<td>Uranus</td>
<td>5</td>
</tr>
<tr>
<td>Neptune</td>
<td>6</td>
</tr>
<tr>
<td>Pluto</td>
<td>6</td>
</tr>
<tr>
<td>Asteroids</td>
<td>7</td>
</tr>
<tr>
<td>Comets</td>
<td>7</td>
</tr>
<tr>
<td>Solar System Statistics</td>
<td>8</td>
</tr>
<tr>
<td>Instructions for Puzzle Assembly</td>
<td>9</td>
</tr>
<tr>
<td>Color Guide</td>
<td>10</td>
</tr>
<tr>
<td>Puzzle Pieces</td>
<td>11</td>
</tr>
<tr>
<td>NASA Resources for Educators</td>
<td>27</td>
</tr>
<tr>
<td>Electronic Resources for Educators</td>
<td>28</td>
</tr>
<tr>
<td>Teacher Reply Card</td>
<td>Inside Back Cover</td>
</tr>
</tbody>
</table>
Introduction

The Solar System Puzzle Kit allows students to create an eight-cube paper puzzle of the solar system with the enclosed kit. The kit may be duplicated for classroom use. It is also recommended as a take home activity for children and parents.

By assembling the puzzle, hand-coloring the bodies of the solar system, and viewing the puzzle’s 12 sides, students will reinforce their knowledge of the many fascinating worlds that make up our solar system.

In addition to puzzle pieces, the kit contains interesting facts about the Sun, each of the planets, the asteroids, and the comets. The resource section at the end of the publication provides sources to obtain additional resources on the solar system, including those on the Internet.

NASA Images

Some of the vast collection of images from the National Aeronautics and Space Administration (NASA) have been converted into sketches for this Solar System Puzzle Kit. These images come from a variety of sources, collected for more than 30 years from spacecraft that have traveled—and in some cases are still traveling—throughout the solar system to learn more about the Sun and the planets.

Through flyby spacecraft, orbiters, atmospheric probes, and landers, NASA has studied all of the planets from close range except Pluto. However, Pluto has been observed with the Hubble Space Telescope. A number of satellites have collected images of the Sun, and so have astronauts on board the Skylab space station. Astronauts have taken a total of more than 200,000 photographs of Earth from orbit.
The Sun, the star at the center of our solar system, is about 5 billion years old. The closest star to Earth, it is 145 million kilometers (km) distant (one Astronomical Unit, or AU). The next closest star is 300,000 times further away. Our Sun supports life on Earth and affects the seasons, climate, weather, currents in the ocean, and circulation of the air in the atmosphere.

The Sun is some 333,400 times more massive than Earth (mass = 1.99×10^{30} kg), and it contains 99.86 percent of the mass of the entire solar system. The ionized gas in the Sun is held together by gravitational attraction, which produces immense internal pressure and high temperatures (more than a billion times greater than Earth’s atmosphere).

Inside the Sun’s core, temperatures reach 16 million° K, which is sufficient to sustain thermonuclear fusion reactions. The total energy generated is 383 billion trillion kilowatts/second (equivalent to 100 billion tons of TNT exploding each second). Radiative and convective zones extend from the core to the surface where the temperature decreases from 8 million to 7,000° K, and the density decreases from 20 g/cm³ to 4×10^{-7} g/m³. A photon takes about 10 million years to escape from the dense core to reach the surface of the Sun.

The Sun’s surface, or photosphere, is the visible, 500-km-thick layer of escaping radiation, light, and sunspots. Beyond the photosphere is the chromosphere, which appears during total solar eclipses as a reddish rim of hot hydrogen atoms. The corona extends outward, forming the solar wind that sweeps charged particles to the edge of the solar system.

Smaller than all the other planets, except for Pluto, Mercury is about one-third the size of Earth. This planet has a magnetic field, although Earth’s magnetic field is considerably stronger. However, the planet’s density (5.4 g/cm³) is about the same as Earth’s. Scientists think the density indicates an enormous iron core composing some 75 percent of Mercury’s diameter. A rocky mantle and crust only about 600 km thick surround the core. When the core and mantle cooled, the radius of the planet reduced by 2 to 4 km. The probable result of the planet’s crust shrinking is Mercury’s unique system of compressive fractures.

Only half of the surface of Mercury has been seen by spacecraft. The heavily cratered upland regions and large areas of smooth plains that surround impact basins resemble the surface of the Moon. Fine-grained soil covers Mercury’s surface. Unlike the Moon, regions of gently rolling, smooth plains are the planet’s major type of terrain. Eruptions of lava within and surrounding large impact craters formed these smooth plains.
Earth is the third planet from the Sun, the fifth largest planet in the solar system, and the only planet known to harbor life. Earth’s diameter is 656 km larger than that of Venus.

We experience the planet’s rotation as the daily routine of sunrise and sunset, while the four seasons result from Earth’s axis of rotation being tilted more than 23 degrees.

Our planet’s rapid spin and molten nickel-iron core give rise to a magnetic field, which the solar wind distorts into a teardrop shape. Earth’s only satellite, the Moon is unusually large relative to its planet, with a diameter one-fourth of Earth’s. It has a slight egg shape, with the small end pointing toward Earth; this causes the same side of the Moon to always face Earth.

An ocean of air that consists of 78 percent nitrogen, 21 percent oxygen, and 1 percent other constituents envelopes the surface of the planet. This atmosphere shields us from nearly all harmful radiation coming from the Sun and protects us from meteors as well—most of which burn up before they can strike the surface.

The North American continent continues to move west over the Pacific Ocean basin, roughly at a rate equal to the growth of our fingernails. We are made aware of this movement when it is interrupted by earthquakes. Scientists noticed a distinctive pattern to those earthquakes, leading them to conclude that Earth is dynamic, with its surface separated into moving caps or plates. Earthquakes result when plates grind past one another, ride up over one another, collide to make mountains, or split and separate. These movements are known as plate tectonics.

Oceans at least 4 km deep cover nearly 70 percent of Earth’s surface. Water exists in the liquid phase only within a narrow temperature span (0 to 100 °C). This temperature span is especially narrow when contrasted with the full range of temperatures found within the solar system. Water vapor in the atmosphere is responsible for much of Earth’s weather.

Venus, the second planet in the solar system, is known throughout history as both the evening and the morning star. Venus is Earth’s closest planetary neighbor and is similar to Earth in size, mass, composition, and distance from the Sun. Its scorching surface temperature of about 484°C could melt lead. The planet’s atmosphere consists mainly of carbon dioxide with persistent sulfuric acid clouds. This atmosphere is extremely dense, exerting 90 times more pressure than Earth’s atmosphere does.

Venus rotates in a direction opposite of Earth, which means that if you were standing on Venus, you would see the Sun rising in the west and setting in the east. The planet rotates sluggishly. In fact, a “day” on Venus (243 Earth days) lasts longer than a Venus year, which lasts 225 Earth days.

The Magellan spacecraft mapped 98 percent of the planet, revealing a surface consisting of 27 percent lowlands, 65 percent rolling plains, and 8 percent highlands. At least 85 percent of Venus is covered by volcanic rock—mostly lava flows that form the planet’s vast plains. Mountains deformed by repeated geologic activity cover much of the remaining surface areas, some stretching 11 km high over the plains. The density of craters formed by the impact of asteroids and comets, at about two craters per million square km, is lower than densities of craters on the Moon or Mars. In fact, few craters are smaller than about 25 km in diameter because of the shielding effect of Venus’ dense atmosphere. The atmospheric pressure completely crushes and destroys any small meteorites with diameters of less than 1.5 km that pass through the atmosphere.
Mars—the fourth planet, the Red Planet—has polar ice caps and markings that looked, through 19th century telescopes, to be similar to human-made water canals on Earth. American and Russian orbiters did not disclose any canals on Mars, but they did find evidence of surface erosion and dried riverbeds, indicating the planet was once capable of sustaining liquid water. For millions of years, the Martian surface has been barren of water; Mars is too cool and its atmosphere is too thin to allow liquid water to exist. There is no evidence of civilizations, and it is unlikely that there are any extant life forms, but there may be fossils of life forms from a time when the climate was warmer and liquid water existed.

Mars is a small rocky planet. The surface of Mars retains a record of its evolution, including volcanism, impact events, and atmospheric effects. Layered terrains near the Martian poles suggest that the planet’s climate changes have been periodic, perhaps caused by a regular change in the planet’s orbit. The crust of the planet seems to move vertically, with hot lava pushing upwards through the crust to the surface. Periodically, great dust storms occur that engulf the entire planet. The effects of these storms are dramatic, including dunes, wind streaks, and wind-carved features.

Mars has some remarkable geological characteristics, including: the largest volcanic mountain, Olympus Mons (27 km high and 600 km across), in the solar system; volcanoes in the northern Tharsis region that are so huge they deformed the planet’s spherical shape; a gigantic equatorial rift valley, the Vallis Marineris; and a “crusted dichotomy,” with the northern third being young lowlands and the southern two-thirds ancient highlands. This canyon system could easily fit the Grand Canyon inside it; its distance is equivalent to that between New York and Los Angeles.

Jupiter, the fifth planet, is the largest, containing two-thirds of the planetary mass of our solar system. Jupiter is like a small sun with its own miniature solar system; it is composed of hydrogen and helium and has 16 moons, as well as a thin, three-band ring system. Jupiter does not burn like the Sun because it contains only one-eighth of the mass needed to ignite its liquefied gas.

Jupiter’s atmosphere contains turbulent cloud layers of ammonia ice, ammonium-hydrogen sulfide crystals, and water ice or perhaps liquid water. The pressure of Jupiter’s atmosphere is strong enough to form a layer of liquid metallic hydrogen capable of conducting huge electrical currents. The persistent radio noise and strong magnetic field of Jupiter could emanate from this layer of metallic liquid. Jupiter’s magnetic field is immense, pouring billions of watts into Earth’s own magnetic field every day. The atmosphere bristles with lightning and swirls with huge storm systems like the Great Red Spot, which have persisted for at least 100 years (perhaps 400 years).

In December 1995, NASA’s Galileo spacecraft arrived at Jupiter and deployed a probe into the Jovian atmosphere. The probe fell for nearly an hour, revealing that the atmosphere is much drier than expected and does not exhibit the three-tiered cloud layers anticipated. Further, the atmosphere contained only one-half the expected helium. The probe also revealed previously unknown radiation belts and a virtual absence of lightning. After releasing the probe, Galileo embarked on a tour of the Jovian system, performing flybys of the largest moons from as much as 1,000 times closer than did the Voyager missions. It has recorded volcanic activity on Io and revealed that the moon has an iron core almost one-half its diameter. Also, the moon Europa may have a layer of warm ice or liquid water beneath its cracked icy surface. Such observations promise to advance our understanding of small bodies of the outer solar system for decades to come.
First thought to be a comet, Uranus is the seventh planet from the Sun. Four times the size of Earth, Uranus' orbit extends 19 times farther from the Sun than Earth's orbit. Tipped, Uranus behaves as a giant top as it spins on an axis almost in the plane of orbit. This motion leads to extreme seasonal variation in what sunlight is available. Over the period of one Uranian year (84 Earth years), the polar regions of the planet go through four seasons, as on Earth, with perpetual sunlight in the summer and total darkness in the winter. Periods of alternating day and night are interspersed in the spring and fall. Due to its great distance from the Sun, Uranus' temperatures remain a somewhat constant –220°C throughout the year.

Uranus' atmosphere consists primarily of hydrogen and helium, with a small amount of methane and trace amounts of other elements. Electrical processes and heat from internal planetary sources enrich the layered chemical mix of the atmosphere, which probably transitions from superheated water near the core to the ammonia ice clouds that are observed at the cloudtop. The planet's atmosphere also features storm structures similar to Jupiter's Great Red Spot. Saturn's magnetic field is 1,000 times stronger than Earth's.

Saturn, the sixth planet, is a giant, gaseous planet with an intriguing atmosphere. Alternate jet streams of east-west and west-east circulation can be traced in the motions of the cloud tops; the speeds of these jet streams reach as much as 625 km/hr and are responsible for the banded appearance of the clouds. The atmosphere consists mostly of hydrogen and helium, but also includes trace amounts of other elements. Electrical processes and heat from internal planetary sources enrich the layered chemical mix of the atmosphere, which probably transitions from superheated water near the core to the ammonia ice clouds that are observed at the cloudtop. The planet's atmosphere also features storm structures similar to Jupiter's Great Red Spot. Saturn's magnetic field is 1,000 times stronger than Earth's. While Jupiter, Uranus, and Neptune also have ring systems, Saturn's ring system is the most extensive and brilliant. Today we know Saturn has seven major ring divisions. The rings may be the remnants of moons destroyed by tidal interaction with Saturn's gravity. They may include remnants of comets that passed too close to Saturn and were likewise destroyed. Rings are composed mostly of ice crystals, ranging in size from a few centimeters to a few meters. The major rings contain hundreds of ringlets, with some rings being "braided," others being flanked with small moons, and shadowy "spokes" developing and dissipating in the rings.

Of Saturn's 18 moons (two and possible four new moons were discovered by the Hubble Space Telescope in 1995), some are covered in very smooth ice. Saturn's largest moon, Titan, is a little bigger than Mercury and has a thick atmosphere of nitrogen. This nitrogen atmosphere may be similar to primordial Earth, perhaps containing the chemical building blocks of life.

Uranus possesses a system of at least 11 thin, widely separated rings. The rings of Uranus are optically dark, on the average reflecting only 2 percent of the sunlight that falls on them. Its 15 moons all lie along the planet's equatorial plane, tipped 98 degrees relative to the planet's orbit to the Sun.
Neptune is the eighth planet and the smallest of the giant gas planets. Its magnetic field—like that of Uranus—is a highly tilted 47 degrees from the axis of rotation.

Neptune receives only 3 percent as much sunlight as Jupiter; yet it is a dynamic planet and surprisingly shows several large, dark spots. The largest spot, dubbed the Great Dark Spot, was about the size of Earth and was similar to Jupiter’s Great Red Spot, which is a hurricane-like storm. Hubble Space Telescope images reveal that the Great Dark Spot is gone. Neptune has the strongest winds on any planet, with winds blowing up to 2,000 km/hr. Most of its winds blow westward, opposite to the rotation of the planet. A small irregularly shaped, eastward-moving cloud “scoots” around Neptune every 16 hours or so; this “scooter” could be a cloud plume rising above a deeper cloud deck.

Neptune has four rings and eight moons. The rings appear to be “ring arcs,” or partial rings; however, they actually are complete. The rings vary in thickness so that they cannot be fully viewed from Earth. All eight moons are small and remain close to Neptune’s equatorial plane. Triton, the largest satellite of Neptune, is one of the most interesting satellites in the solar system. It shows evidence of a remarkable geologic history, with active geyser-like eruptions spewing invisible nitrogen gas and dark dust particles several kilometers into the tenuous atmosphere. Triton’s relatively high density and retrograde orbit offer strong evidence that it is not an original member of Neptune’s family, but is a captured object.

Pluto is the smallest, coldest, and farthest planet from the Sun, with an orbit that is the most elliptical and tilted. Due to its great distance, Pluto has not been visited by spacecraft. As a result, we do not know much about Pluto.

We do know that Pluto is very small—smaller than Earth’s moon, some 2,330 km across. The planet’s surface is slightly reddish, composed of exotic snows of methane, nitrogen, and carbon monoxide. Pluto has polar caps as well as large, dark spots near the equator. Evidence indicates the existence of a rock and water ice interior. Above the surface lies an atmosphere one millionth the density of Earth’s. Although the atmosphere is much more tenuous than Earth’s, Pluto’s low gravity (about 6 percent of Earth’s) causes the atmosphere to be much more extended in altitude than Earth’s. Because Pluto’s orbit is so elliptical, the planet grows much colder during the part of each orbit when it is far from the Sun. As a result, Pluto’s atmosphere is thought to persist only for the part of its orbit when Pluto is closer to the Sun, as it is now. When it is further from the Sun, the atmosphere freezes out on the surface as ice.

The moon Charon, which is almost half the size of Pluto, orbits the planet every 6.4 days, at an altitude of about 18,300 km. Given the rough similarity of Pluto’s size to Charon’s, most planetary scientists refer to Pluto-Charon as a double, or binary, planet. Charon’s surface differs from Pluto’s; it is covered with dirty water ice and does not reflect as much light as Pluto’s surface. Charon’s surface is devoid of strong color. To date, scientists have not found evidence to indicate that Charon has an atmosphere.
A large number of rocky and metallic objects orbit around the Sun but are too small to be considered full-fledged planets. These objects are known as asteroids or minor planets. Asteroids are material left over from the formation of the solar system. Some 4,000 numbered and named asteroids circle the Sun between the orbits of Mars and Jupiter. Scientists speculate that an additional 100,000 asteroids exist with diameters greater than 1 km.

The asteroid belt appears to be divided into two very different regions. The inner asteroid belt (inside about 400 million km) is dominated by materials produced by strong heating and melting of the original proto-asteroids; later fragmentation has exposed their deep interiors. Beyond 400 million km, the belt is dominated by dark objects rich in carbon, organic molecules, and sometimes water-rich clay minerals. These materials could not have survived significant heating, and asteroids in this region probably preserve much information about the formation of the solar system.

A few asteroids in the inner portion of the asteroid belt are referred to as Mars-crossing or Amor asteroids, because the orbits of these objects cross that of Mars. In addition, well over 30 objects have been located that come in far enough to cross Earth’s orbit. These Earth-crossing or Apollo asteroids usually measure a few km in diameter, or less, with the largest measuring about 8 km across. Most Earth-crossing asteroids appear to originate in the main asteroid belt. There is evidence that Earth has been hit by asteroids in the past. One of the least eroded, best preserved examples is the Barringer Meteor Crater near Winslow, Arizona.

Most comets reside in the Oort cloud, some 50 to 100,000 AU in diameter around the Sun. Comet nuclei orbit in this frozen abyss until they are gravitationally perturbed into new orbits that carry them close to the Sun. Many of the nearly 900 recorded comets have orbital periods in excess of 200 years. Some comets pass through the solar system only once, while others have their orbits gravitationally modified by a close encounter with one of the giant outer planets. These latter visitors can enter closed elliptical orbits and repeatedly return to the inner solar system.

The nucleus of a comet is an irregularly shaped, almost black aggregate of water ice, carbon, silicic, methane, and ammonia. The average size of the nucleus ranges from 1 to 10 km in diameter. As a nucleus falls inside the orbits of the outer planets, the volatile elements of which it is made gradually warm. By the time the nucleus enters the region of the inner planets, these volatile elements are boiling, forming a coma, or cloud-like “head,” that can measure tens of thousands of km across. The coma grows as the comet gets closer to the Sun.

The charged particles from the Sun, known as the solar wind, push on the coma, blowing it back and forming “tails.” One tail, consisting of of gases and ions, is pushed out by radiation pressure, and the other tail escapes along magnetic field lines. As the nucleus orbits, the dust particles are left behind in a curved arc. Both the gas and dust tails point away from the Sun; in effect, the comet chases its tails as it recedes from the Sun. The tail can reach 150 million km in length, but the total amount of material contained in this dramatic display would fit in an ordinary suitcase.
Solar System Statistics

![Diagram of the Solar System with major planets labeled: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto.]

<table>
<thead>
<tr>
<th>Categories</th>
<th>Sun</th>
<th>Mercury</th>
<th>Venus</th>
<th>Earth</th>
<th>Mars</th>
<th>Jupiter</th>
<th>Saturn</th>
<th>Uranus</th>
<th>Neptune</th>
<th>Pluto</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mean Distance From Sun (Millions of Kilometers)</td>
<td>—</td>
<td>57.9</td>
<td>108.2</td>
<td>149.6</td>
<td>227.9</td>
<td>778.3</td>
<td>1,427</td>
<td>2,871</td>
<td>4,497</td>
<td>5,913</td>
</tr>
<tr>
<td>2. Period of Revolution</td>
<td>—</td>
<td>87.9 days</td>
<td>224.7 days</td>
<td>365.3 days</td>
<td>687 days</td>
<td>11.86 years</td>
<td>29.46 years</td>
<td>84 years</td>
<td>165 years</td>
<td>248 years</td>
</tr>
<tr>
<td>3. Equatorial Diameter (Kilometers)</td>
<td>1.39 million</td>
<td>4,880</td>
<td>12,100</td>
<td>12,756</td>
<td>6,786.8</td>
<td>143,200</td>
<td>120,000</td>
<td>51,800</td>
<td>49,528</td>
<td>~2,330</td>
</tr>
<tr>
<td>5. Moons</td>
<td>—</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>16</td>
<td>18+ (?)</td>
<td>15</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>6. Rings</td>
<td>—</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1,000 (?)</td>
<td>11 (?)</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>7. Inclination of Orbit to Ecliptic</td>
<td>—</td>
<td>7°</td>
<td>3.4°</td>
<td>0°</td>
<td>1.85°</td>
<td>1.3°</td>
<td>2.5°</td>
<td>0.8°</td>
<td>1.8°</td>
<td>17.1°</td>
</tr>
<tr>
<td>8. Eccentricity of Orbit</td>
<td>—</td>
<td>.206</td>
<td>.007</td>
<td>.017</td>
<td>.093</td>
<td>.048</td>
<td>.056</td>
<td>.046</td>
<td>.009</td>
<td>.248</td>
</tr>
<tr>
<td>9. Rotation Period</td>
<td>26.8 days</td>
<td>58.9 days</td>
<td>243 days retrograde</td>
<td>23 hours 56 min.</td>
<td>24 hours 37 min.</td>
<td>9 hours 55 min.</td>
<td>10 hours 40 min.</td>
<td>17 hours 12 min. retrograde</td>
<td>16 hours 7 min.</td>
<td>6 days 9 hours 18 min. retrograde</td>
</tr>
<tr>
<td>10. Inclination of Axis*</td>
<td>7.25°</td>
<td>Near 0°</td>
<td>177.2°</td>
<td>23° 27'</td>
<td>25° 12'</td>
<td>3° 5'</td>
<td>26° 44'</td>
<td>97° 55'</td>
<td>28° 48'</td>
<td>120°</td>
</tr>
</tbody>
</table>

* Inclinations greater than 90° imply retrograde rotation.
Instructions for Puzzle Assembly

Materials
Solar System Puzzle Patterns*
Cellophane tape
Colored marker pens or pencils
Scissors
Razor blade craft knife
Butter knife
Cutting surface
Metal edge ruler
White glue (optional)
* If possible, copies of the puzzle patterns should be printed on 60 to 100 pound weight white paper or could be glued on poster board. Otherwise, have the patterns duplicated at a commercial copier business on heavy paper stock.

Instructions
1. Carefully cut out each cube pattern.
2. Using the razor blade knife and a cutting surface beneath, cut the center of the small slots on each pattern. Matching tabs will be inserted into these slots.
3. With the metal edge ruler for a guide, use the butter knife to score the white dashed lines on each pattern. Be sure not to press down so hard that the paper is cut. The score lines will make it easy to fold the patterns precisely. Also score the tabs and flaps.
4. Pre-fold each pattern piece on the score lines to make sure the folds are square.
5. Each pattern page forms a single cube. Join the corresponding tabs and slots (A to A, B to B, etc.) of the puzzle pieces to begin forming cubes. Use tape on the inside of the cube joint to hold these pieces together firmly.
6. Join the edges of the cubes together by inserting tabs into the corresponding slots cut into the flaps. Work your way around the cube until all sides are joined. You may wish to use the point of the razor blade knife to assist you in getting the last tabs in place. (Assembly gets easier with practice!) After assembling each cube, you can make them stronger by pulling the tabs slightly from their slots and placing a small drop of glue on the tabs. Push the tabs back in and set the cube aside to dry.
7. When all cubes are assembled, put the puzzle together. Starting with one side of the puzzle at a time, begin coloring the images of the objects pictured. Use the coloring instructions as a guide or have students find images of the planets and Sun in astronomy books and try to match the colors in the puzzle. You can also color the captions.

Alternate Construction Techniques
A more rugged puzzle can be constructed by gluing the squares to blocks of wood or other materials. Reduce or expand the patterns on a copy machine to fit the blocks. Be sure to place the squares in the proper positions so that properly oriented puzzle faces will be created.

Activities and Questions
1. Assemble the puzzle cubes so that all sides match. The exterior faces of the puzzle picture the Sun and five planets. The other objects are visible when the inside faces are opened.
2. Based on the information contained in the chart on page 8, discuss the different sizes of the objects pictured in the puzzle. Because of vast differences between the Sun and the planets, no consistent scale has been used for the images. Have students draw a circle on the chalkboard one meter in diameter. Then have the students draw other circles to represent the planets to scale. Use the chart on page 8.
3. Discuss the distances between the planets. Make a scale model of the distances of the planets using the distance between Earth and the Sun as a reference. Let that distance equal one meter.
4. Why is it difficult to create a scale model of the solar system with both distance and diameters to the same scale?
5. Why are only the rings of Saturn shown on the puzzle and not the rings of Jupiter, Uranus, and Neptune?
6. Why is only half of Mercury pictured?
7. Have other nations sent spacecraft to study the planets? Which ones?
8. What spacecraft made the picture of Pluto?
9. Why is Pluto shown with its single moon Charon?
10. If you were the first explorer to travel to the other planets, what would you want to learn about them?
Color Guide

Sun:
Color the entire disk of the Sun yellow. Add orange and red over the mottled areas of the Sun's surface. Leave the white areas yellow. Color the prominences shooting out from the surface red.

Mercury:
Color the entire planet light gray.

Venus:
Color the entire planet orange. Darken the shaded areas with tan or light brown.

Earth:
Color the oceans blue. Leave the clouds and the ice of Antarctica white. Color Africa and Madagascar tan with a green tint. Make the darker shaded areas slightly more brown.

Mars:
Color the entire planet orange.

Jupiter:
Color the light areas yellow. Make the Great Red Spot and the shaded band near it reddish. Color all shaded bands orange with a slight red tint.

Saturn:
Color the entire planet and its rings tan or light orange.

Uranus:
Color the entire planet blue green.

Neptune:
With the exception of some white clouds near the Great Dark Spot, color the entire planet light blue. Make the spot and the shaded bands darker blue.

Pluto and Charon:
Color the fuzzy outer edges light blue. Leave the centers white.

Comet:
Leave white.

Asteroid:
Color the entire asteroid light gray.
Sun
- Diameter: 1,392,000 km
- Rotation: 27 days
- Composition: Hydrogen and Helium
- Surface Temperature: About 5,800 degrees C

Mars
- Distance from Sun: 227,900,000 km
- Diameter: 6,786.8 km
- Composition: Rock and metal
- Atmosphere: Carbon dioxide
- Moons: 2
- Rings: 4
- Distance from Sun: 4,497,900,000 km

Neptune
- Distance from Sun: 4,497,900,000 km
- Diameter: 49,528 km
- Composition: Gas and rock
- Atmosphere: Hydrogen, helium, methane
- Moons: 8
- Rings: 4
Earth
Distance from Sun: 149,600,000 km
Diameter: 12,756 km
Composition: Rock, metal, water
Atmosphere: Nitrogen and oxygen
Moons: 1

Saturn
Distance from Sun: 1,427,000,000 km
Diameter: 120,000 km
Composition: Gas and rock
Atmosphere: Hydrogen and helium
Moons: 18 (or more)
Rings: 1,000 (?)
Uranus
Distance from Sun: 2,871,000,000 km
Diameter: 51,800 km
Composition: Gas and rock
Atmosphere: Hydrogen, helium, and methane
Moons: 15
Rings: 11?

Venus
Distance from Sun: 108,200,000 km
Diameter: 12,100 km
Composition: Rock and metal
Atmosphere: Carbon dioxide
Moons: None
Comets

- Distance from Sun: Ranging from millions to trillions of km
- Diameter: 1-10 km
- Composition: Dust and ice
- Atmosphere: Water ice turns to gas when warmed by Sun

Jupiter

- Distance from Sun: 778,300,000 km
- Diameter: 143,200 km
- Composition: Gas and rock
- Atmosphere: Hydrogen and helium
- Moons: 16
- Rings: 1

Mercury

- Distance from Sun: 57,9,000,000 km
- Diameter: 4,880 km
- Composition: Rock and metal
- Atmosphere: None
- Moons: None
Pluto and Charon
Distance from Sun: 5,913,000,000 km
Diameter: ~ 2,330 km
Composition: Ice and rock
Atmosphere: Methane
Moons: 1
Asteroids (Gaspra)

Distance from Sun: Inner asteroid belt (<400 million km) and outer belt (>400 million km)

Diameter: 1-1,000 km

Composition: Rock and metal

Atmosphere: None
NASA Resources for Educators

NASA’s Central Operation of Resources for Educators (CORE) was established for the national and international distribution of NASA-produced educational materials in audiovisual format. Educators can obtain a catalog and an order form by one of the following methods:

- **NASA CORE**
 Lorain County Joint Vocational School
 15181 Route 58 South
 Oberlin, OH 44074
 - Phone: (216) 774-1051, Ext. 249 or 293
 - Fax: (216) 774-2144
 - E-mail: nasaco@leeca8.leeca.ohio.gov
 - Home Page: http://spacelink.mslfc.nasa.gov/CORE

Educator Resource Center Network

To make additional information available to the education community, the NASA Education Division has created the NASA Educator Resource Center (ERC) network. ERCs contain a wealth of information for educators: publications, reference books, slide sets, audio cassettes, videotapes, telelecture programs, computer programs, lesson plans, and teacher guides with activities. Educators may preview, copy, or receive NASA materials at these sites. Because each NASA Field Center has its own areas of expertise, no two ERCs are exactly alike. Phone calls are welcome if you are unable to visit the ERC that serves your geographic area. A list of the centers and the regions they serve includes:

- AK, AZ, CA, HI, ID, MT, NV, OR, UT, WA, WY
- NASA Educator Resource Center
 Mail Stop 253-2
 NASA Ames Research Center
 Moffett Field, CA 94035-1000
 Phone: (415) 604-3574
- CT, DE, DC, ME, MD, MA, NH, NJ, NY, PA, RI, VT
- NASA Educator Resource Laboratory
 Mail Code 130.3
- NASA Goddard Space Flight Center
 Greenbelt, MD 20771-0001
 Phone: (301) 286-8570
- CO, KS, NE, NM, OK, SD, TX
- NASA Educator Resource Room
 Mail Code AP-2
- NASA Johnson Space Center
 2101 NASA Road One
 Houston, TX 77058-3696
 Phone: (281) 483-8696
- FL, GA, PR, VI
- NASA Educator Resource Laboratory
 Mail Code ERL
- NASA Kennedy Space Center
 Kennedy Space Center, FL 32899-0001
 Phone: (407) 867-4090
- KY, NC, SC, VA, WV
- Virginia Air and Space Museum
 NASA Educator Resource Center for NASA Langley Research Center
 600 Settlers Landing Road
 Hampton, VA 23669-4033
 Phone: (757) 727-0900 x 757
- IL, IN, MI, MN, OH, WI
- NASA Educator Resource Center
 Mail Stop 8-1
- NASA Lewis Research Center
 21000 Brookpark Road
 Cleveland, OH 44135-3191
 Phone: (216) 433-2017

Regional Educator Resource Centers (RERCs) offer more educators access to NASA educational materials. NASA has formed partnerships with universities, museums, and other educational institutions to serve as RERCs in many states. A complete list of RERCs is available through CORE, or electronically via NASA Spacelink.

NASA On-line Resources for Educators provide current educational information and instructional resource materials to teachers, faculty, and students. A wide range of information is available, including science, mathematics, engineering, and technology education lesson plans, historical information related to the aeronautics and space program, current status reports on NASA projects, news releases, information on NASA educational programs, useful software, and graphics files. Educators and students can also use NASA resources as learning tools to explore the Internet, to access information about educational grants, to interact with other schools that are already online, to participate in on-line interactive projects, and to communicate with NASA scientists, engineers, and other team members to experience the excitement of real NASA projects.

Access these resources through the NASA Education Home Page: http://www.hq.nasa.gov/education

or, for more information, send an e-mail to: comments@spacelink.mslfc.nasa.gov

NASA Television (NTV) is the Agency’s distribution system for live and taped programs. It offers the public a front-row seat for launches and missions, as well as informational and educational programming, historical documentaries, and updates on the latest developments in aeronautics and space science. NTV is transmitted on GE-2 on Transponder 9C at 85 degrees West longitude, vertical polarization, with a frequency of 3,880 megahertz, audio on 6.8 megahertz, or through collaborating distance learning networks and local cable providers.

Apart from live mission coverage, regular NASA Television programming includes a News Video File from noon to 1:00 pm, a NASA History File from 1:00 to 2:00 pm, and an Education File from 2:00 to 3:00 pm (all times Eastern). This sequence is repeated at 3:00 pm, 6:00 pm, and 9:00 pm, Monday through Friday. The NTV Education File features programming for teachers and students on science, mathematics, and technology, including the NASA. . On the Cutting Edge Education Satellite Videoconference Series. The videoconferences include NASA scientists, astronauts, and education specialists presenting aeronautics and Earth and space science topics of interest to teachers and students of grades 5-12. The series is free to registered educational institutions. The videoconferences and all NASA Television programming may be videotaped for later use.

For more information on NASA Television, contact:
NASA Headquarters, Code P-2, NASA TV, Washington, DC 20546-0001
Phone: (202) 358-3572

For more information about the Education Satellite Videoconference Series, contact: Videoconference Producer, NASA Teaching From Space Program, 308 CITD, Room A, Oklahoma State University, Stillwater, OK 74078-8089
E-mail: edge@aesp.nasa.okstate.edu
Home Page: http://www.okstate.edu/aesp/VC.html

How to Access NASA’s Education Materials and Services, EP-1996-11-345-HQ
This brochure serves as a guide to accessing a variety of NASA materials and services for educators. Copies are available through the TRC network, or electronically via NASA Spacelink.

AL, AR, IA, LA, MO, NV, U.S. Space and Rocket Center
NASA Educator Resource Center for NASA Marshall Space Flight Center
P.O. Box 700115
Huntsville, AL 35807-7015
Phone: (205) 544-5612

CA
NASA Educator Resource Center
Building 1200
NASA Stennis Space Center
Stennis Space Center, MS 35232-4000
Phone: (601) 688-3338

JPL Educational Outreach
NASA Educator Resource Center
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109-0999
Phone: (818) 354-6916

MS
NASA Educator Resource Center
Building 1200
NASA Stennis Space Center
Stennis Space Center, MS 35232-4000
Phone: (601) 688-3338

NASA Educator Resource Center
Building 1200
NASA Stennis Space Center
Stennis Space Center, MS 35232-4000
Phone: (601) 688-3338

VA and MD’s Eastern Shores
NASA Educator Resource Lab
Education Complex - Visitor Center
Building J-1
NASA Wallops Flight Facility
Wallops Island, VA 23337-5099
Phone: (805) 948-7347

How to Access NASA’s Education Materials and Services, EP-1996-11-345-HQ
This brochure serves as a guide to accessing a variety of NASA materials and services for educators. Copies are available through the TRC network, or electronically via NASA Spacelink.
Many of the planetary images in this publication are available to educators in the file “Welcome to the Planets,” via the World Wide Web (WWW) located at:
http://pds.jpl.nasa.gov/planets

Copies of the CD-ROM “Welcome to the Planets” for Macintosh and DOS/Windows platforms are available for purchase through the National Space Science Data Center. Contact:
Request Coordination Office
National Space Science Data Center
Code 633.4
NASA Goddard Space Flight Center
Greenbelt, MD 20771
E-mail: request@nssdca.gsfc.nasa.gov

The following listing of Internet addresses will provide users with robust links to Earth and space science educational materials throughout the WWW. NASA resources begin with sites that cover a range of topics and become increasingly science specific.

NASA Resources

NASA Spacelink (See inside front cover.)
http://spacelink.msfc.nasa.gov

NASA Home Page
http://www.nasa.gov/

NASA Goddard Space Flight Center Space Science Education Home Page
http://www.gsfc.nasa.gov/education/education_home.html

NASA Mission to Planet Earth Home Page
http://www.usra.edu/mtpe/mtpe.html

NASA Office of Space Science Home Page
http://www.hq.nasa.gov/office/oss

NASA Jet Propulsion Laboratory Learning Link
http://learn.jpl.nasa.gov

Remote Sensing Public Access Center
http://www.rspac.ivv.nasa.gov

Public Access to NASA’s Planetary Data
http://pds.jpl.nasa.gov/public

Lunar and Planetary Institute
http://cass.jsc.nasa.gov/lpi.html

Astronomy On-line: Ask Dr. Sue
http://sdcd.gsfc.nasa.gov/ISTO/ASK

NASA/JPL Imaging Radar Home Page
http://southport.jpl.nasa.gov

Global Quest: The Internet in the Classroom
http://quest.arc.nasa.gov

Other Earth and Space Science Resources

Arizona Mars K-12 Educational Supplement and Guide
http://esther.la.asu.edu/cgi-bin/imagemap/tes_home?144,327

Astronomical Society of the Pacific
http://www.physics.sfsu.edu/asp/asp.html

Earth System Science Education Program
Universities Space Research Association
http://www.usra.edu/esse/Educational_Resources.html

The Nine Planets: A Multimedia Tour of the Solar System
http://seds.lpl.arizona.edu/nineplanets/nineplanets.html

The Planetary Society
http://planetary.org/tps/

San Francisco State University Physics and Astronomy
http://www.physics.sfsu.edu/educate.html

Space Telescope Science Institute (STScI)
http://www.stsci.edu

Space Telescope Science Institute Exploration in Education (EXInED) Picture Books
http://stsci.edu/exined-html/exined-home.html

Telescopes In Education
http://www.mtwilson.edu/tie.html

Copies of the CD-ROM “Welcome to the Planets” for Macintosh and DOS/Windows platforms are available for purchase through the National Space Science Data Center. Contact:
Request Coordination Office
National Space Science Data Center
Code 633.4
NASA Goddard Space Flight Center
Greenbelt, MD 20771
E-mail: request@nssdca.gsfc.nasa.gov
Fold along line, and tape closed.
TEACHER REPLY CARD
Solar System Puzzle Kit
An Activity for Earth and Space Science

To achieve America’s goals in educational excellence, it is NASA’s mission to develop supplementary instructional materials and curricula in science, mathematics, and technology. NASA seeks to involve the educational community in the development and improvement of these materials. Your evaluation and suggestions are vital to continuously improving NASA educational materials.

Please take a moment to respond to the statements and questions below. You can submit your response through the Internet or by mail. Send your reply to the following Internet address:

http://ednet.gsfc.nasa.gov/edcats/puzzle_kit

You will then be asked to enter your data at the appropriate prompt. Otherwise, please complete this reply card and return by mail. Thank you.

1. With what grades did you use the puzzle kit?
Number of Teachers/Faculty:

K-4 _____ 5-8 _____ 9-12 _____ Community College College/University

Graduate _____ Undergraduate

Number of Students:

K-4 _____ 5-8 _____ 9-12 _____ Community College College/University

Graduate _____ Undergraduate

Number of Others:

Administrators/Staff _____ Parents _____ Professional Groups

Civic Groups _____ General Public _____ Other ________________________

2. What is your 9-digit zip code? __ __ __ __ __ — __ __ __ __

3. How was the quality of this puzzle kit?

□ Excellent □ Good □ Average □ Poor □ Very Poor

4. How did you use this puzzle kit?

□ Background Information □ Critical Thinking Tasks
□ Demonstrate NASA Materials □ Demonstration
□ Group Discussions □ Hands-On Activities
□ Integration Into Existing Curricula □ Interdisciplinary Activity
□ Lecture □ Science and Mathematics
□ Team Activities □ Standards Integration

□ Other: Please specify:

5. What features of this puzzle kit did you find particularly helpful?

__

__

__

6. How can we make this puzzle kit more effective for you?

__

__

__

7. Additional comments:

__

__

__

Today’s Date: __________________________
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
EDUCATION DIVISION
MAIL CODE FE
WASHINGTON DC 20546-0001

Fold along line, and tape closed.